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Abstract

It is challenging to perform k-means clustering on a large
scale dataset efficiently. One of the reasons is that k-means
needs to scan a batch of training data to update the clus-
ter centers at every iteration, which is time-consuming. In
the paper, we propose a variance reduced k-means VRKM,
which outperforms the state-of-the-art method, and obtain 4 x
speedup for large-scale clustering. The source code is avail-
able on https://github.com/YaweiZhao/VRKM _
sofia-ml.

Motivation

K-means clustering needs to pass over a batch of instances
in order to update cluster centers at each iteration, which
is computationally intensive. The pioneering work in (Bot-
tou, Bengio, and others 1995) proposes a stochastic gradient
descent (SGD) variant of k-means in which one instance is
randomly sampled to update cluster centers at each iteration.
However, this variant usually brings in stochastic noise'. Be-
sides, a mini-batch variant of k-means is proposed in (Scul-
ley 2010) to decrease the stochastic noise while increasing
the computational cost in calculating the gradient.

Recently, SVRG has been developed to decrease the
stochastic noise of SGD via variance reduced gradi-
ents(Johnson and Zhang 2013). However, we observe that
k-means is sharply divergent at iterations when applying
SVRG directly. The reason is that the optimization objec-
tive of k-means is jointly dominated by cluster centers and
instance partitions. Directly applying SVRG to k-means will
first search an optimal decreased direction based on the cur-
rent instance partition. When the instance partition changes,
this direction may not be optimal or even not be a decreased
one. It is called the drift of cluster centers, which impedes
SVRG to be used into k-means. Moreover, SVRG needs
to compute a batch gradient at every epoch, which is time-
consuming for a large dataset. Therefore, it is valuable to im-
prove k-means by using SVRG efficiently for a large dataset.
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Figure 1: The illustration of the basic data structures and
operations where ¢, is nearest to ;.

Symbols and definitions

As illustrated in Figure 1, X € RY*" represents the dataset
which contains n instances, and each of instance has d fea-
tures. X, denotes the instance set of a cluster ¢ € R?*!, and
its size is denoted by v. c represents the center of X .. z; with
i € {1,2,...,n} represents an instance. V f(c) and V f;(c)
represent the batch and stochastic gradients with respect to c,
respectively. K is the number of clusters. C' € R?*¥ repre-
sents K centers such that C' = [cy, ¢a, ..., ¢k ]. 2{C'} repre-
sents the nearest center of z. V,,(C') represents the gradient
with respect to 2{C'}. If = belongs to the cluster ¢, V,(C)
is obtained by using the k-th column of C' to subtract  and
setting other columns to be 0.

Define 1 Given a cluster center set C = [c1,...,Ck], the
nearest cluster center of x is denoted by r{C} € RI*!
which is one of the K centers. The index of the center is
denoted by T,;cy which is an integer ranging from 1 to K.

Define 2 Given a cluster center set C = [cy, ..., cx| and an
instance x. The gradient with respect to x{C'} is denoted by
Vo (C) € R™E The T, 1oy -th column of V. (C) is 2{C} —

x, and the other columns are zeros.

Variance reduced k-means clustering
The formulation of k-means is mcin f(@)

1/2mcinzf; '\ Ywex, || ci—x |*. The gradient with

respect to a center ¢; is Vf(¢;) = >, cx. ¢ — x. Further-

more, suppose x;, is randomly picked at the ¢-th iteration,
the stochastic gradient is V f;,(¢;) = ¢; — z;,. When the
cluster center ¢ drifts, it is corrected by the average gradient
of the instances:

CE- V@) = (- 1Y ,ex.7) = Ko

The position correction of ¢ guarantees that it is close to the
optimum based on the current instance partition.
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Algorithm 1 VRKM: variance reduced k-means

Require: The number of clusters K. The dataset X. The
constant learning rate 7). The epoch size T'.

1: Initialize each ¢ € C with instances picked from X ran-
domly;

2: repeat

3: Update the nearest cluster center for every instance
x; with ¢ € {1,2,...,n} according to C, and thus obtain
the instance partitions { X, , ..., Xc, 1

4: C() = "V = (X17X2,...,XK),and let Xg;xew =
X, forl <i < K;

5: Obtain z;{C™"}, T, (cnewy and V,, (C"°%) for
every instance z; with 1 < ¢ < n based on the instance
partition {Xg?ew7 T Xal;{ew };

6: fort=0,1,....,T — 1 do

7: Pick an index i; from {1, 2, ..., n} randomly;

8: Find the nearest cluster center from C} for z;,,
and thus obtain z;,{C}}, Z,, (c,y and V., (Cy);

9: if xit{C’t} 75 xit{énew} or Izif{ct} 7é
I :

i (Gnev, then )
Y =V, (Cr) — vrit (cnev);
Cip1 = ét — Nts
else Ct+1 = Ot;
C~' = CT;
until convergence;
return (:‘;

xr
10:
11:
12:
13:
14:
15:

After the position correction, we obtain Cmew Then, the
variance reduced gradient is:

Vmit (Ct) _ vwit (Cvrlew) + Vf(énew)
Va,, (Cr) = Vi, (C™)

because that V f(¢*V) = >  (¢"Y —x) = 0 holds
for every ¢. As with the increase of iterations, the cluster
center ¢; and ¢4 are close to the optimum c,.. We obtain

Vt

n lim Ey, = lim ECyyq — lim EC, = C, — C = 0.
t—o00 t—o0 t—o0

Here, “E” is the expectation operator on ;. Thus,
tlim (Ev;) = 0 holds when the learning rate 7 is a con-
— 00

stant. Benefiting from this property, a constant learning rate
is used to accelerate k-means. It is superior to the traditional
methods which use a decaying learning rate. As illustrated
in Algorithm 1, every cluster center is corrected by the aver-
age of the instances according to Line 4. Lines 10 — 11 mean
that the variance reduced gradient is used to update the cen-
ters with a constant learning rate. VRKM does not need to
compute the batch gradient at every epoch according to Line
10, thus yielding a high efficiency.

Empirical studies

In this section, VRKM is compared with the batch k-means
denoted by KM (Lloyd 1982), the SGD k-means denoted
by SGD-KM (Bottou, Bengio, and others 1995), the mini-
batch k-means denoted by mini-KM (Sculley 2010), and the
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Figure 2: The comparison of the time consumption.

state-of-the-art algorithm denoted by GB-KM (Newling and
Fleuret 2016). As far as we know, GB-KM is the newest vari-
ant of k-means which is related to our methods. The dataset
is CIFAR-100. The y-axis represents the decrease of the ob-
jective function against a baseline. The baseline is obtained
by running KM for a long given time. The size of a mini-
batch is 5000 in mini-KM. The epoch size of VRKM is n.
The learning rate of VRKM is 5ng with 19 = K/n.

Results. As illustrated in Figure 2, VRKM has an advan-
tage on decreasing the objective loss. Specifically, it yields
4.30x and 3.60x speedups for CIFAR-100, respectively.
Additionally, we adopt three metrics: ACC, NMI, and Purity
to test the clustering quality. VRKM yields the best cluster-
ing solution (ACC: 0.2246, NMI: 0.3742, Purity: 0.2488).
Benefiting from the variance reduced gradients and the con-
stant learning rate, VRKM finishes more iterations than the
previous methods for the given time, thus yielding the best
clustering performance.
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